
 

Abstract 

A switching power supply (SPS) requires an input filter 
to reduce the high frequency current harmonics generated 
by switch action that are returned to the source.  The 
interaction between the input filter and control loop of the 
SPS can adversely affect loop stability, audiosusceptibility 
and output impedance.  To guarantee system stability 

1+is ZZ  must satisfy the Nyquist stability criterion, 
where sZ  is the input filter output impedance and iZ  is 
the SPS closed-loop input impedance.  Parametric 
uncertainty in the SPS can cause a nominally stable 
system to become unstable.   Component uncertainties ∆∆∆∆ 
in the SPS are isolated from the nominal structure M and 
the structured singular value µ is used to analyze 
robustness of SPS stability with a conventionally designed 
2-stage, phase-lead controller with an integrator.  It is 
shown that stability robustness can be improved with a 
controller designed with a µ-synthesis technique known as 
D-K iteration.  The µ-optimal controller lessens input 
filter and SPS interactions and improves system stability. 
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1. Introduction 

High frequency switching power supply (SPS) input 
current harmonics are produced by SPS switch action.  
These current harmonics flow back through the source 
impedance and create voltage disturbances on the input to 
the SPS.  These voltage disturbances can create problems 
for the SPS, as well as, other loads on the source bus.  
High frequency current can find its way to the other loads 
and cause problems, such as overheating of capacitors and 
additional input voltage fluctuations.  Significant 
electromagnetic interference problems may arise from 
high frequency currents traveling through circuit board 
traces and along cabling. 

A filter is usually added to the input of an SPS to 

reduce the magnitude of the current harmonics injected on 
the bus.  The input filter presents a low impedance to the 
SPS and keeps current harmonics circulating within the 
SPS.   A well-damped input filter can also benefit the load 
on the SPS by attenuating high frequency source voltage 
transients that might otherwise propagate to the output. 

However, despite the necessity and benefits of an input 
filter, an improperly designed input filter can have a 
detrimental effect on the SPS and destabilize it, especially 
at lower source voltages and higher loads. The closed-
loop, input-to-output transfer characteristic, known as 
audiosusceptibility and the closed-loop output impedance 
of the SPS, can also be adversely affected. 

1.1 Previous Investigations  

Most of the work on the interaction between the input 
filter and SPS has centered on the proper design of the 
input filter to meet filtering requirements, while mitigating 
the adverse effects of the filter on regulator dynamics.  
The work of Middlebrook [1,2] laid the analytical 
foundation for understanding the origins of the complex 
interactions between an input filter and a SPS.  This work 
was founded on the state-space averaging approach of 
Middlebrook and Ćuk [3] and the canonical circuit models 
derived from the state-space description of switching 
power supplies.  Middlebrook provided practical, design 
oriented circuit solutions that were founded on a solid 
analytical understanding of switching converters.  After 
the unifying work of Middlebrook, researchers started 
taking a more detailed look at optimization of input filters 
[4,5]. Development of practical design guidelines for 
input filters that did not result in adverse interactions with 
the SPS was a goal.  

There has also been research on the proper design of 
the SPS to reduce interactions with the input filter.   
Middlebrook has discussed the use of lossless damping to 
reduce the peaking of the SPS output filter [6].  While 
Middlebrook’s approach introduces additional, low-loss 
power train components to dampen the peaking, others 
have pursued small-signal approaches.  Current 
programmed SPS and their interactions with input filters 
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have been investigated extensively [7, 8, 9].  A common 
point made throughout these studies is the effectiveness of 
current mode control to dampen the peaking of the SPS 
output filter.  The reduced peaking lowers the input 
admittance of the SPS and leads to less interaction 
between the SPS and input filter.  Novel adaptive control 
methods have also been utilized to reduce input filter and 
SPS interactions [10, 11, 12], although these control 
methods tend to be complex and do more than just lessen 
interactions between the input filter and SPS. 

1.2 Scope of the Current Work 

The current work presents a µ-synthesis design 
approach to reduce the closed-loop input admittance of a 
SPS in its mid-frequency range and mitigate input filter 
interactions.  The uncertainty ∆∆∆∆ in individual power train 
components is separated from the nominal structure M of 
a SPS and a linear fractional representation of the system 
is constructed.  The component uncertainty block ∆∆∆∆ is 
augmented with a performance uncertainty block ∆∆∆∆p that 
represents exogenous disturbances to the system.  With 
the augmented uncertainty structure, perturbations to the 
SPS components, input voltage, and regulation reference 
voltage can be used to design a robust controller, which 
minimizes closed-loop input admittance and maintains 
acceptable gain and phase margins for stability. 

A robust, optimal controller for a buck converter with 
an input filter is designed with the Matlab µ-Analysis and 
Synthesis [13], LMI Control [14], and Linear Fractional 
Representation [15] toolboxes.  Simulation results are 
given for robust stability and performance µ, closed-loop 
input impedance, and open-loop gain.  A Nyquist stability 
analysis is done to evaluate the input filter and buck 
interactions.  All simulation results with the robust, 
optimal controller are compared to results with a 
conventionally designed 2-stage, phase-lead controller 
with an integrator. 

2. Theoretical Background 

In the following discussion signals are represented in 
their steady-state X, small signal x̂ , or total xXx ˆ+=  

forms, as appropriate.  Transfer functions are represented 
with italicized capital letters.  Vector and matrix quantities 
are represented with bold capital letters.  All converter 
performance characteristics are closed-loop, unless 
otherwise stated. 

2.1 Converter Small Signal Modeling 

Middlebrook and Ćuk [3] have developed small-signal, 
low frequency models of standard switching converter 
topologies: 1) buck, 2) boost, and 3) buck-boost.  The 
models represent an average over one switch cycle of the 
on and off states of converters operating in the continuous 
mode.  Such a model can be used to investigate the effects 
of parameter variation on converter performance 
characteristics, such as stability, audiosusceptibility, and 
input and output impedances. Small signal descriptor state 
(1) and output (2) equations below represent the buck 
converter in Fig. 1.  The state variable 

[ ] Tˆˆˆ cL vi=x consists of the inductor current Lî  and 
capacitor voltage cv̂ .   The input [ ] Tˆˆˆ eg vv=u  consists 
of the input gv̂  and control ev̂  voltages, where 

em vhd ˆˆ ⋅= .  d̂  is the converter duty cycle and hm is the 
modulator gain.  The modulator converts the analog signal 

ev̂  to a pulsed voltage to switch Q between the on and off 

states.  The output is [ ] Tˆˆˆ og vi=y , where gî  is the buck 
input current and ov̂  is the output voltage.  The small 
signal descriptor state space (DSS) equation is 

 uBxAxE ˆˆˆ ⋅+⋅=⋅ & , (1) 
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Fig. 1 – Buck Converter with Input Filter and Controller 
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2.2 Input Filter Interactions 
A requirement for system stability of the buck converter 

and filter in Fig. 1 is that 11 +T , where is ZZT =1  is a 
minor loop gain, does not have any roots in the right half 
plane (RHP).  In other words 11 +T  must satisfy the 
Nyquist stability criterion.  The SPS input impedance iZ  
is best described with the input admittance iY , which is 
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where T is the buck and controller loop gain and eiZ  is 
the input impedance of the buck output filter.  (3) is 
derived from the canonical circuit model [3], which is a 
circuit realization of the state space model in (1) and (2).  

eiZ  may possess significant peaking in its mid-frequency 
range and result in low phase or gain stability margins or 
even instability in either T1 or the major loop T.  
Uncertainty in converter components results in a widely 
varying eiZ  and makes it difficult to meet performance 
objectives and maintain stability.  However, optimum 
design of the controller K can reduce the peaking, 
improve stability margins, or even turn an unstable system 
into a stable one. 

2.3 Linear Fractional Representation 

A matrix M, relating input u = [u1; u2] and output p = 
[p1; p2], can be partitioned into top and bottom parts, so 
that p1 = M11⋅u1 + M12⋅u2 and p2 = M21⋅u1 + M22⋅u2.  If a 
second matrix ∆∆∆∆ is introduced, so that u1 = ∆∆∆∆⋅p1, then the 
relationship between u2 and p2 can be solved to give 

 ( )[ ] 212
1

1121222 uM∆MI∆MMp ⋅⋅⋅−⋅⋅+= −  

or ( ) 22 u∆Mp ⋅⋅= UF . (4) 

( )∆M ⋅UF  is an upper linear fractional representation 
(LFR) or transformation.  If ∆∆∆∆ is introduced, so that u2 = 
∆∆∆∆⋅p2, then the relationship between u1 and p1 can be 
solved for a lower LFR FL(M⋅∆∆∆∆).  Uncertain systems can 
be structured as a LFR, in which M represents the 
nominal system and ∆∆∆∆ the system uncertainty. 

Each of the five components L, C, R, Rl, and Rc in (1) 
and (2) have some uncertainty.  The uncertainty can be 
represented as an additive perturbation p = pn ± ∆p, where 
pn is the nominal component value and ∆p is the 
perturbation from pn.  The parametric uncertainty must be 
separated from the nominal system to perform µ-analysis 

and synthesis.  This is a difficult task for some systems.  
Buso [16] modeled the parametric uncertainty in a buck-
boost converter as two lumped, complex multiplicative 
perturbations, which are easily structured as a linear 
fractional representation (LFR).  This approach does not 
allow the uncertainty in individual components to be 
investigated.  Tymerski [17] created a LFR which used 
both additive and multiplicative perturbations to model 
individual component uncertainties.  However, the 
conversion from the state space representation to the LFR 
is difficult and requires some intuition on the part of the 
designer. 

More recently Gahinet [14] has provided a systematic 
approach to separating parametric uncertainty from an 
uncertain system in descriptor state space (DSS) form.  
The technique requires that the uncertain DSS form be 
transformed to an intermediate affine parameter dependent 
system, which can then easily be converted to a LFR. 

Uncertain linear systems with affine parameter 
dependence can be expressed in descriptor state space 
(DSS) form as 
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uncertain parameters.  Each irii δ Iδ ⋅=  represents a 
system component and each element of Pi is a constant 
matrix.  irI  is an identity matrix of dimension ii rr × . The 
subscript n signifies a matrix with nominal component 
values.  Singular value decomposition is used to factor 
each Pi to give 
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The factors are accumulated in matrices L, M, T, R, 
and S. 

The goal of the intermediate transformation in (6) is to 
create a LFR such that 

 uBwBxAxE ⋅+⋅+⋅=⋅ nzxnn & , 
 uDwDxCz ⋅+⋅+⋅= uwzwxw , 

and ,uDwDxCy ⋅+⋅+⋅= nzyn  (7) 

where w = ∆∆∆∆⋅z.  (7) is illustrated in Fig. 2.  The system 
matrix M and uncertainty matrix ∆∆∆∆ are shown.  After some 
algebra, it can be shown [18] that LB =zx , 

nnxw AETRC ⋅⋅−= −1 , ,1 LETD ⋅⋅−= −
nzw  MD =zy , 



 

and nnuw BETSD ⋅⋅−= −1 . 

For µ-analysis and synthesis the parameter variations δ 
should be normalized to δ′ so that δ′∈[-1 1].  This can be 
accomplished with a transformation  

 Q∆PR∆ ⋅′⋅+= , (8) 

where ( )
mrrdiag IIP ,...,

1
= ,  
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It can be shown [15] that ( ) ( )∆M∆M ′′= ,, uu FF , where  

 ( ) PMRMIQM ⋅⋅⋅−⋅=′ −
11

1
1111 , 

 ( ) 12
1

1112 MRMIQM ⋅⋅−⋅=′ − , 

 ( ) PMRMIRMPMM ⋅⋅⋅−⋅⋅+⋅=′ −
11

1
11212121 , 

and ( ) 12
1

11212222 MRMIRMMM ⋅⋅−⋅⋅+=′ − . (9) 

2.4 µµµµ -Analysis and Synthesis 

The structured singular value is defined as 
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unless no ∆∆∈  makes I - M⋅∆∆∆∆ singular, in which case 
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}icmrmicmrm rr ++++∈Ci∆ .  The structured singular value µ∆(M) 
is used to analyze the robustness of systems.  Calculation 
of µ∆(M) is an NP hard problem, however, algorithms 
have been created to find upper βu and lower β{ bounds of 
µ∆(M) across a frequency range of interest.  βu separates 
the results into regions that are guaranteed robustly stable 

and not robustly stable.  β{ provides a measure of the 
possible conservativeness of the results. 

Performance criteria, such as input impedance and 
tracking error, can be evaluated by incorporating 
exogenous signals into the system.  In the case of input 
impedance iZ  the signals have already been included in 
(1) and (2).  The small signal input impedance can also be 
defined as 

   
g

g
i i

v
Z ˆ

ˆ
= , (11) 

where gv̂  is the buck input voltage and gî  is the buck 
input current.  The small signal tracking error is defined as 

 or vve ˆˆˆ −= , (12) 

where ov̂  is the buck output voltage.  rv̂  is the regulation 
reference voltage.  These criteria can be evaluated by 
introducing a disturbance on one signal and measuring its 
effect on the other.  For example, if a disturbance is 
introduced on the input voltage gv̂ , the effect on the input 
current gî  can be measured and their ratio taken to 
determine the input impedance iZ .  Furthermore, if the 
input current is weighted with the expected or desired 
input impedance, then the input impedance is essentially 
normalized.  The parametric uncertainty block ∆∆∆∆ can be 
augmented with a performance uncertainty block ∆∆∆∆p that 
represents these performance or exogenous disturbances.  
µ∆(M) can then be used to evaluate the effect of the 
augmented uncertainty block diag (∆∆∆∆, ∆∆∆∆p) on the system 
M.  In this manner the performance criteria are evaluated 
in the context of their effect on system “stability”. 

µ-synthesis consists of finding a controller that 
minimizes µ∆(M) across a range of frequencies.  
Minimization of µ∆(M) implies that a larger set of 
perturbations in diag (∆∆∆∆, ∆∆∆∆p) is necessary to drive the 
system into instability.  In this sense the controller is 
“optimum”.  An algorithm known as D-K iteration is used 
to find the optimum controller.  D refers to scaling 
matrices that are used in µ-analysis and synthesis to 
calculate the upper bound βu on µ∆(M).  K refers to the 
controller.  For a fixed D finding the K that minimizes 
µ∆(M) is a standard H∞ control problem.  For a given 
stabilizing K finding a new D that minimizes µ∆(M) is a 
standard convex optimization problem.  The D-K iteration 
proceeds back and forth between these two parameter 
minimizations, until an acceptable error between iterations 
is reached.  With arguments based on the small gain 
theorem it can be shown that the condition for robust 
stability is µ∆(M11( j⋅ω)) < 1 ∀ ω.  Robust performance is 
achieved, if µ∆(M( j⋅ω)) < 1 ∀ ω. 

3. Results For Buck Converter 

The buck topology in Fig. 1 is selected to investigate 

 
Fig. 2 – LFR for Descriptor State Space System 



 

converter interactions with a single stage input filter.  The 
nominal component values of the buck are L = 1.80µH, C 
= 1750µF, R = 1Ω, Rl = 30mΩ, and Rc = 9mΩ.  The 
uncertainty in each component is ±50%.  The input 
voltage to the buck is Vg = 12V and the output voltage Vo 
= 5V.  This results in a static duty cycle D ≈ 0.417.  The 
modulator gain is hm = 0.511.  The modulator gain is 
dependent on the particular circuit implementation that is 
chosen.  The input filter component values are Ls = 
3.20µH, Cs = 48µH, RsL = 30mΩ, and Rcs = 0.3mΩ.  

3.1 Converter Representation 
The parametric uncertainty in the buck converter in (1) 

and (2) is represented as an affine parameter dependent 
system.  It is assumed that Rc << R.  This does not result 
in any significant effect on the system and is true for most 
buck converter designs.  The A, C, D, and E system 
matrices become 
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where G = 1/R.  Each constant matrix is an element of Pi 
in (6).  The Bd = B matrix is unchanged, because it does 
not depend on any component parameter.  The subscript d 
is a reminder that Rc << R. 

The weighting function for the input current is 
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izW  represents the desired input impedance iZ  and 

shapes the small signal closed-loop input current gî , so 

that 1ˆ <⋅ gz iW
i

, as in any standard ∞H  control 

problem.   Complex perturbations from the uncertainty 
block ∆∆∆∆ are injected on the buck input voltage to produce 

gî .  At low frequency 
izW  is equivalent to the buck 

converter input impedance with nominal component 
values.  In the mid-frequency range, where the controller 
is able to modify iZ ,  

izW  has been selected to raise the 

buck input impedance.  Stability gain and phase margins 
cannot be controlled with only 

izW , so a second 
weighting function We for the tracking error is defined.  It 
is  
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The descriptor state space model in (1) and (2), the 
±50% parametric uncertainty, and the weighting functions 
in (14) and (15) are implemented in Matlab.  Functions in 
the LMI Control [14] and Linear Fractional 
Representation [15] toolboxes are used to create the affine 
model, convert it to a LFR, and normalize the parametric 
uncertainty.  The performance objectives for input 
impedance and stability phase and gain margins are 
implemented as exogenous disturbances in ∆∆∆∆p and added 
to the normalized parametric uncertainty block ∆∆∆∆, 
resulting in diag (∆∆∆∆, ∆∆∆∆p). 

The µ-Analysis and Synthesis [13] toolbox is used to 
perform D-K iteration and create an optimum controller 
KOPT.  The optimum controller has order 18.  It is reduced 
to order 3 with a truncated balanced realization.  The 
transfer function of the reduced order controller is 
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KOPT is plotted in Fig. 3, along with the non-reduced 
controller, and a non-optimum, 2-stage, phase-lead 
controller K with an integrator, designed mostly by trial 
and error with frequency domain analysis.  It can be seen 
that the reduced order, optimum controller follows the 
non-reduced, optimum controller closely.  The obvious 
benefit from the optimum controller is improved gain and 
phase in the middle to high frequency range. 

 
Fig. 3 – Controller Comparison 



 

 µ-analysis for stability is shown in Fig. 4.  This 
analysis shows that the buck is stable for component 
variations of ±50%, since µ∆(M11) < 1 ∀ f.  The real 
valued parametric uncertainty block ∆∆∆∆ is weighted with a 
small percentage (10%) of complex valued uncertainty to 
give a lower bound β{ that converges reasonably well.  
This weighting makes the bounds somewhat more 
conservative, although stability is still achieved for the 
entire range of uncertainty. 

µ-analysis for performance is shown in Fig. 5.  This 
analysis shows that the buck does not achieve robust 
performance, since µ∆(M) > 1 at middle to lower 
frequencies.  This is because the weighting function 

izW  
in (14) is not entirely met.  To emphasize its role in 
shaping input impedance 

izW  is chosen to have the shape 
of the desired nominal, damped input impedance.  Since 
the controller has no effect on low frequency input 
impedance, parametric perturbations mean 1ˆ <⋅ gz iW

i
 

cannot be guaranteed.  Nevertheless, the mid-frequency 
peaking in the input impedance has been significantly 
decreased with the reduced, optimum controller, as can be 
seen in Fig. 6.  Nominal and perturbed buck converter 
input impedance with both the non-optimum and reduced, 

optimum controllers are shown.  The component 
perturbations consist of a 50% increase in L and C and a 
50% reduction in Rl and Rc from the nominal values.  
Other combinations of component variations within the 
specified ±50% show similar reductions in peaking. 

Fig. 7 shows the nominal and perturbed buck open-loop 
gain with the same component variations.  It can be seen 
that the bandwidth has increased with the reduced, 
optimum controller and the phase margin has been 
improved, especially for the perturbed system.  The 
increased bandwidth is not a problem, provided the 
converter switch frequency is not too low.  200 – 300kHz 
is acceptable.  Fig. 8 shows the Nyquist stability analysis 
of the combined input filter and buck converter with both 
the non-optimum and the reduced, optimum controller.  
The component variations are the same, as before.  The 
ratio of the output impedance of the input filter to the 
input impedance of the buck with the non-optimum 
controller ics ZZ  encircles (-1, j0), indicating that the 
system is unstable.  However, the ratio of the output 
impedance of the input filter to the input impedance of the 
buck with the reduced, optimum controller 

irs ZZ  does 
not encircle (-1, j0), indicating that the system is stable 
with good phase margin. 

 
Fig. 6 – Closed-Loop Input Impedance 

 
Fig. 4 – µµµµ for Stability 

 
Fig. 5 – µµµµ for Performance 

 
Fig. 7 – Open-Loop Gain 



 

4. Conclusions 
Parametric uncertainty in a buck converter is modeled 

in a linear fractional representation (LFR).  The 
construction of the LFR from the descriptor state space 
(DSS) form is facilitated with an intermediate affine 
parameter dependent representation.  Converter input 
impedance and stability margins are specified in 
weighting functions and included with parametric 
perturbations in an augmented uncertainty block. 

A µ-optimum controller is designed with D-K iteration 
and shown to increase the input impedance of a buck 
converter by reducing the peaking effects of the output 
filter.  This eliminates an instability in the minor loop gain 

is ZZT =1  between the converter input filter and the 
converter with ±50% variation in converter power train 
component values. 
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Fig. 8 – Nyquist Stability for Minor Loop Gain T1 
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