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Abstract 

A design automation approach utilizing a simulation 
test-bed driven by a genetic optimization procedure, 
intended for electric circuit design applications, is 
developed. A Windows-based, off-the-shelf version of 
Pspice, capable of accurate representation of the most 
complex circuits and numerical assessment of their 
efficiency criteria performs the test-bed function. 
Application of genetic optimization results in attainable 
optimal or close-to-optimal solutions of the design 
problem subject to various criteria and constraints. The 
GenSpice package, implementing the approach, enables 
the designer to utilize the hardware resources to their full 
potential, as well as to minimize the response time to the 
market requirements. A power system design 
optimization case study provides an illustration of the 
application of the resultant software tool. 
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1.  Introduction 
Designers of electric circuitry are facing ever-

increasing and fast-changing demands on size, weight, 
efficiency, load conditions and performance 
characteristics of power supplies. In many instances, 
existing design procedures centered on experience and 
the intuition of designers, could be blamed for increasing 
the “response time” of the manufacturers to the market 
demands and cause difficulties in meeting the market 
requirements. Consequently, a novel power electronics 
component undergoes a lengthy period of experimental 
implementation and fine-tuning. Computer-based design 
automation/optimization approaches have the potential 
for the alleviation of these difficulties, replacing the 
experimentation by simulation and providing the 
designers the means for optimal decision-making. A 
number of publications illustrate various concepts in the 

development of such approaches [1], [2], [3]. However, 
these attempts have not yet significantly impacted the 
design practices. This could be explained by the fact that 
some authors rely on analytical models of the circuits to 
be designed that, typically, are too complex to develop 
and implement in software. This makes the approach 
inflexible and thus requires a significant effort when the 
model has to be modified. The optimal design problem, 
formulated on the basis of such a mathematical model, is 
often too formidable for most optimization techniques 
and its numerical solution is dependent on the “good 
initial conditions”, specified by the designer. 

The efficiency of genetic optimization in the analog 
circuit design problems was first demonstrated by [4], 
who applied it to optimize performance characteristics, 
such as gain and input offset voltage, of four different 
operational amplifiers. The resultant software tool 
requires the user to inspect PSpice net lists and enter 
encoding information into set-up menus. 

Pspice-based models have been commonly used for 
design verification and fine-tuning. However, the 
potential of PSpice has never been used to the fullest due 
to the limited ability of a designer to fully comprehend 
the simulation data and establish and implement a 
strategy of simulation experiments leading to the optimal 
solution of the design problem. At the same time, genetic 
optimization procedures providing reliable means for 
solving the most complex, multivariable constrained 
optimization problems with multi-modal criteria have 
been available in various modifications.  However, their 
application in conjunction with computer simulators is 
not feasible without establishing an automated data 
exchange between the two computer codes. 

A user-friendly and flexible approach to genetic 
optimization with PSpice was first shown by Heimes and 
Elmore [5]. Fundamentally, the authors did not rely on 
overly complex analytical mathematical models, utilizing 
the PSpice simulation environment instead. They were 
successful in establishing a simulation/optimization 
scheme in which a sequence of PSpice-based simulation 
experiments is conducted “under the supervision” of a 



genetic optimization procedure. In this scheme, every 
simulation experiment returns the numerical value of a 
particular circuit performance criterion, and the genetic 
optimization procedure utilizes these values and 
implements the special strategy to modify the design 
parameters and initiate a new simulation experiment.  
This effort, resulting in a software tool known as 
GenSpice, was a part of a multi-disciplinary optimization 
that also used Ansoft Maxwell 3D to evaluate current 
density in thyristors and minimize the envelope volume 
of the thyristor assembly. 

2.  Optimal Circuit Design Problem  
Design of an electrical circuit implies that specific 

numerical values of the circuit components, primarily 
resistors, inductors and capacitors be chosen in order to 
satisfy the design specifications and inherent constraints.  
The design specifications may reflect the electrical 
efficiency of the circuit, its frequency response, the 
required output voltage given the input voltage, etc.  
When the circuit configuration is defined, a 
mathematical model providing the definition of the 
circuit characteristics as a function of the numerical 
values of the circuit components could be established.  In 
the conventional design procedure such a model is 
utilized by the designer to validate the design decisions.  
For example, a model of the circuit shown in Fig. 1 may 

include equations providing an explicit definition of the 
power dissipation in the circuit, P=P(U1, Ri, Lj, Ck, i, j, k 
= 1, 2,…), and the output voltage, U2=U2 (U1, Ri, Lj, Ck, 
i, j, k = 1, 2,…), for any combination of the numerical 
values of the circuit components and the input voltage 
U1. 

Since a typical circuit design problem has many 
acceptable solutions, the designer attempts to choose one 
favoring one of the resultant circuit characteristics, while 
complying with others. This leads to an optimal design 
problem that could be formalized on the basis of the 
mathematical model. For example, an attempt to 

maximize the electrical efficiency of the above circuit 
while achieving the required output voltage may be 
represented by the following nonlinear constrained 
optimization problem 
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subject to V1 ≤ U2(U1, Ri, Lj, Ck)≤ V2, W1 ≤U1≤W2 and Ri ≥ 
0, Lj ≥ 0, Ck ≥ 0, for i, j, k=1, 2, … that most likely will 
be converted into a nonlinear, discontinuous, 
unconstrained optimization problem reflecting the 
method of penalty functions. One can realize that until 
recently optimal design of a practical power circuit would 
result in an unacceptable amount of analytical work, and 
the optimal solution would not be attainable due to the 
high dimension of the problem and multi-modal criterion 
(i.e. having many local minimum points).  Consequently, 
the designed circuitry often does not utilize the hardware 
to its full potential, and the fine-tuning process results in 
lengthy delays. 

The approach presented by the authors eliminates the 
need in the development of an analytical model of the 
circuit, utilizing common PSpice models. Such a model 
provides the necessary relationships between the design 
variables and the circuit characteristics and criteria 
numerically. In addition, the authors employed a genetic 
optimization procedure capable of finding the global 
optimum of a multi-modal criterion. 

3.  Genetic Optimization Algorithm 
A mathematical model of an electrical circuit, 

reflecting the physical phenomena behind its operation, 
provides a description of the complex interrelation 
between various parameters of the circuit and 
characteristics of its performance.  Such a model has a 
number of applications including accurate assessment of 
the circuit’s performance, analysis of sensitivity of 
particular performance characteristics to design 
parameters, and provides a simulation test-bed for 
analysis of the entire electrical circuit.  Moreover, the 
model presents a basis for the formalization of the 
optimal design problem of a power system, providing 
mathematical formulation for particular constraints and 
optimization criteria. Indeed, the design problem could 
be defined as the following nonlinear constrained 
optimization problem 

 Min C(X)/[X1§X§X2, A§W(X)§B], (2) 

Where X is a vector of design parameters, which are 
customarily chosen by the power system designer, in 
order to assure certain performance characteristics; 
X1§X§X2 is a set of conditions limiting numerical values 
of the design parameters reflecting the feasibility 
considerations; W(X) is a vector-function representing 
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Figure 1 – Model of an Electrical Circuit 



operational characteristics of the system as functions of 
design parameters; A§W(X)§B is a set of conditions 
presenting design specifications in terms of common 
figures of merit; and C(X) is one of the operational 
characteristics of the system (or a linear combination of 
several operational characteristics taken with appropriate 
weights) designated as the design criterion. 

While performance characteristics of interest, such as 
bandwidth, can be considered linear with respect to 
frequency, overall description of an electrical circuit in 
terms of the physical parameters chosen by the designer 
is given by a set of nonlinear equations. One can realize 
that expressions for W(X) and C(X) reflect laws of 
physics, and in combination constitute the mathematical 
model of the system. Any set of particular numerical 
values of the vector of design parameters, X=X*, 
constitutes a solution of the design problem.  Any set of 
particular numerical values of the vector of design 
parameters, X=X**, that satisfies the feasibility 
conditions and the design specifications, i.e. X1§X**§X2, 
A§P(X**)§B, constitutes an acceptable solution of the 
design problem. The criterion C(X) provides a numerical 
measure of goodness to each acceptable solution of the 
design problem, facilitating the selection of the optimal 
solution, X=XOPT.  While any designer is intended to 
obtain a design solution as close to the optimal solution 
as possible, the “goodness” of the design is based upon 
his/her experience and intuition and truly optimal design 
is still just a matter of good intentions. 

There are two major factors preventing us from 
finding the optimal solution of a design problem. The 
first one is the complexity of solving a nonlinear 
constrained optimization problem. The second factor is 
that, typically, a nonlinear optimization problem has 
many “local” optimal solutions; among those the global 
minimum should be found.  The first difficulty we 
address by converting the original constrained 
optimization problem into an unconstrained optimization 
problem via the method of penalty functions as follows 

 Min L(X), (3) 

where L(X)=C(X)+P1(X)+P2(X) is a loss function and 
P1(X) and P2(X) are penalty functions. 

The above penalty functions can are defined as 
follows 

If [X1§X§X2], P1(X)=0 
If [X1>X], P1(X) = (X1-X )TR1(X1-X ) (4) 
If [X>X2], P1(X) = (X2-X )TR1(X2-X ) 

and 

If [A§W(X) §B], P2(X)=0 
If [A>W(X)], P2(X)= [A-W(X)]TR2[A-W(X)] (5) 
If [W(X)>B], P2(X)= [B-W(X)]TR2[B-W(X)], 

where T is a transpose symbol and R1>>1 and R2>>1 
are weight coefficients.  One can realize that any 
successful minimization effort would result in the 
“enforcing” of the constraints on the vector of design 
parameters X. 

Proliferation of genetic optimization algorithms, 
possessing the advantages of known random and direct 
search optimization procedures, combined with the 
availability of high performance computers alleviated the 
second obstacle in the way of the formal solution of 
design optimization problems. 

The main advantages of genetic algorithms as 
optimization methods are [6]: 

a) robustness, broad applicability; 
b) reliability; 
c) good performance in high-dimensional search spaces; 
d) relatively easy to develop and implement; 
e) no prior knowledge about the required search 

topology; 
f) applicable to multiple criteria optimization; 
g) easily combined with other solution methods; 
h) efficient use of parallel hardware. 

 
The main disadvantages are: 

a) heuristic character that does not guarantee reaching 
the global optimum; 

b) comparatively time consuming; 
c) often ineffective in fine-tuning final solutions. 

The strategy of genetic optimization is analogous to 
biological evolution. From this perspective, its DNA 
determines an organism’s structure and its ability to 
survive. An offspring of two parents inherits some 
characteristics from both of them, as well as having 
others developed as a result of parenting. These 
additional characteristics may improve an offspring’s 
“fitness,” which increases its chances of surviving and 
passing those characteristics to future generations [7], 
[8]. 

When applied to our optimal design problem, the 
DNA of a population member represents a vector of 
design parameters X defined earlier. Therefore, each 
DNA component is a variable of interest that may take on 
a finite set of values. The “fitness” of a member of 
population is determined by a loss function (3). Members 
of a population are subjected to the following operators: 
reproduction, mutation, and selection. Reproduction is a 
genetic operator that combines parents to yield offspring. 
Mutation is another genetic operator that subjects a 
member of a population to a small change, thus 
generating a new offspring. Mutation is intended to 
“explore” the area around the best offspring and parents. 
Selection is a genetic operator, which chooses members 
with the highest “fitness” to form a successive 
generation. 



The offspring is generated by the following parenting 
strategy: 

a) select two parents (points in the n-dimensional space). 
Let parent 1 = (x11, x12, …, x1n), and parent 2 = (x21, 
x22, …, x2n); 

b) generate a uniform variable γ on the interval [0,1]; 
c) let offspring = (x1, x2, …, xn); 
d) offspring coordinates are found as follows 

x1 = γ x11+(1-γ) x21, x2 = γ x12+(1-γ) x22, …, 
xn = γ x1n+(1-γ) x2n; 

e) repeat steps a) through d) until No offspring are 
generated; 

f) repeat steps a) through e) for all parent combinations 
selected based on parenting probability. 

The mutation operator is implemented according to 
the following scheme: 

a) select point (x1, x2, …, xn) from the population; 
b) let the new point = (x1’, x2’, …, xn’); 
c) generate a uniform variable µ on the interval [-1,1]; 
d) coordinate xi’ = xi+k* µ, where k is a constant gain, 

and i = 1, 2, …, n; 
e) repeat steps c) and d) until all coordinates of the new 

point are calculated; 
f) repeat steps b) through e) until Nm mutations are 

generated; 
g) repeat steps a) through f) for the points of the 

generation selected according to mutation probability. 

 The selection operator is employed as follows: 

h) select the first Ng points from the expanded 
generation; 

i) find the point xmax with the worst “fitness” criterion 
Lf

max; 
j) select the next point x with fitness criterion Lf from 

the generation; 
k) if Lf < Lf

max, replace xmax with x, and go to step b), if Lf 
≥ Lf

max, discard point x, and go to step c); 
l) continue until the last member of the generation is 

checked for “fitness.” 

Fig. 2 illustrates application of a genetic algorithm to 
the solution of a design optimization problem.  The 
algorithm proceeds as follows. Combinations of design 
parameters represented by vector X form an N-
dimensional space S. Since those parameters must have 
bounded values defined by the design constraints, an 
acceptable solution will be within an N-dimensional 
subspace S1, whose boundaries are defined by the 
following inequality 

 X1§X§X2. (6) 

The algorithm forms an initial grid within this 
subspace by generating K uniformly distributed points Xi, 
(i=1,2,…,K), that represent possible solutions of the 
constraint optimization problem.  

Each point Xi of the initial grid represents input 
parameters for the mathematical model, which is used to 
compute operational characteristics of the device W(Xi). 
Based on the formulation of the optimization problem, 
the loss function L(Xi) is calculated at each point of the 
initial grid. The first generation is formed by selecting 
Ng<K points Xj, (j=1,2,…,Ng) with the smallest values of 
L(X).  

The process of parenting involves producing No 
offspring per each pair of parents selected from the initial 
generation according to preset parenting probability. 
Each offspring is a new point in N-dimensional space 
located on the line connecting its parents Xi and Xj (i∫j), 
and selected in a random fashion, as described above. 

Parenting is followed by the mutation stage. Each 
point selected from the expanded population, based on 
mutation probability, produces Nm mutations (points 
generated randomly in the immediate area). A successive 
generation is formed by computing the loss function for 
all the points and selecting Ng points with the smallest 
values of L(X). 

The processes of parenting, mutation and forming a 
successive generation are repeated until a termination 
condition is satisfied. The optimization routine produces 
the output in the form of a vector of design parameters 
XOPT, which satisfies the constraints, posed by feasibility 
considerations and design specifications, and facilitates 
minimization/maximization of the design criterion C(X). 

4.  Pspice Optimization Tool 

4.1  Program Structure and Operation 
The controlling program for optimization of a PSpice 

electrical circuit is written in Microsoft Visual BASIC 
6.0.  The student version of OrCAD PSpice Version 9.1 – 

 
Figure 2 - Genetic Optimization-based Design 



Web Update 1 was chosen for the PSpice simulator, 
because of its built-in COM interface.  The Component 
Object Model (COM) interface consists of convenient, 
object-oriented programming commands that provide a 
“back door” into PSpice.   

Fig. 3 illustrates how PSpice and GenSpice 

communicate.  COM acts as the “connecting ‘glue’ 
between software components, enabling unrelated 
software objects to connect and interact in meaningful 
ways [9].”  COM objects are used to 

a) start the PSpice simulation; 

b) monitor the PSpice simulation status and detect when 
it has finished; 

c) communicate PSpice simulation results. 

At the start of the optimization GenSpice reads the 
names of design parameters X and their limiting 
conditions from a text file, which is indicated as the OPT 
file in Fig. 3.  The OPT file is constructed at the same 
time the PSpice schematic is entered into Capture, the 
OrCAD schematic entry tool.  After this initial operation, 
the optimization process shown in Fig. 2 commences.  
GenSpice creates the initial grid or a first generation 
parent population of parameters and writes the first 
parent to the PAR file, as shown in Fig. 3.  The COM 
interface is used to start PSpice.  PSpice reads the PAR 
file and simulates the circuit with the parameter values.  
When the simulation has concluded PSpice notifies 
GenSpice via COM.  With COM GenSpice asks PSpice 
for the resultant operational characteristics W(X), also 
known as, circuit measurements.  GenSpice calculates 
and saves the penalty function L(X) for the run. 

After all the original parent population has been 
evaluated a population of offspring are created from the 
parent population, using the parenting strategy and the 
mutation operator.  GenSpice evaluates each offspring 
with PSpice in the same manner in which the original 
parent population was evaluated. 

The selection operator is applied to the combined 
parent and offspring populations to create a second 
generation of parents.  Selection is done in accordance to 
a fitness criterion. 

The evaluation and selection process continues until 
all generations have been considered.  At that time the 
optimum offspring XOPT is declared, as the one, which 
produces an outcome, which is closest to the goal. 

At the conclusion of the optimization the best 
offspring can be evaluated by writing the parameters that 
comprise the “genetic code” of the offspring into the PAR 
file and running the PSpice simulation.  The result can 
be viewed in Probe, OrCAD’s graphic display tool, and 
compared the GenSpice result. 

4.2  User Input 
Parent and offspring population sizes and the number 

of generations are chosen in Fig. 4, as well as, a fitness 

criterion.  Several commonly accepted criteria are 
allowed.  Genetic operations are selected.  Probabilities 
for parenting, also know as crossover, and mutation are 
entered.  One or two point crossover can be selected.  In 
two-point crossover the “genetic material” in the middle 
of two parents are exchanged to form an offspring.  The 
choices offered in this menu are guided by experience in 
optimization of circuits and guidelines found in the 
literature. [10] 

The design criteria C(X) and operational 
characteristics W(X) are setup in Fig. 5.  C(X) is also 
known as the Cost Function.  Performance results are 
communicated to GenSpice through COM.  The signal 
name is a voltage or current from the PSpice simulation.  
In Fig. 5 an output voltage is indicated as V(OUT).  The 
phase margin of V(OUT) comes from a PSpice function 
called a Goal Function.  The Goal Function, i.e., phase 
margin of V(OUT), is the measurement that is 
communicated to GenSpice via COM after each run of 
the simulation.  Goal Functions are defined in Probe.  
Probe defines a standard set of commonly used Goal 
Functions, but the user can define new Goal Functions, 
as required.  Only one operational characteristic W(X) is 

 
Figure 3 - PSpice and GenSpice Communication 

 
Figure 4 - Optimization Setup Menu 



selected for this optimization in Fig. 5.  It is desired to 
constrain the phase margin to within 245° and 265° 
(actually 65° and 85°, since the phase margin Goal 
Function does not account for the inversion in the 
amplifier for this circuit example).  The Cost Function is 
simply the bandwidth of the circuit.  A pull down menu 
offers a wide range of Cost Functions, which must be 
defined as Goal Functions in the PSpice simulation 
environment. 

The input area for the parameters to be varied is 
entered in an Optimizer Parameters box on the Capture 
schematic.  The name of the parameter and its range of 
allowable values is entered here.  PSpice writes with 
specific instances of circuit components by placing curly 
brackets around the parameter value of the component.  
The bracketed parameters indicate to PSpice that the 
values of these components will be read from the PAR 
file. 

It should be pointed out that additional electrical and 
non-electrical parameters can be assigned to components 
within PSpice, such as cost, size, power rating, weight 
and so on.  Any of these parameters can be defined as 
parameters to vary on the PSpice schematic and written 
to the PAR file by GenSpice.  GenSpice is not restricted 
to optimization of electrical performance only. 

4.3  Additional GenSpice Features 
GenSpice offers several features that assist in 

designing a successful optimization and the evaluation of 
results: 

a) an HTML-based Help function that provides 
information on how to effectively use GenSpice and 
how the software works; 

b) the ability to save and recall optimization setups; 
c) a Pause button to halt a simulation and inspect 

intermediate results; 
d) a plot function to display the best offspring of each 

generation; 
e) a display to view all offspring and their fitness values 

after each generation; 

f) a pedagogical tool that shows how two parents are 
selected and mutated to form an offspring; 

g) and a text file that shows detailed information on each 
offspring of every generation. 

In most cases these special features are not required to 
set up and run an optimization.  However, they can be 
useful in guiding the user in the setup of an efficient 
simulation and providing insight into the results. 

Fig. 6 shows the pedagogical feature of GenSpice 

previously mentioned.  Two parents with the three binary 
encoded circuit parameters are shown before and after  
crossover and after both crossover and mutation.  The 
two-point crossover segment is isolated with dashed lines 
and the mutated encoded circuit parameters are shown in 
bold type.  This illustrates the “random creation” process, 
which is an essential part of genetic optimization. 

5.  Optimization Illustration Using GenSpice 
A closed-loop buck converter with input filter was 

chosen to illustrate the use of GenSpice.  The goal of the 
simulation is to optimize the bandwidth of the converter, 
while constraining the phase margin to an acceptable 
value.  Compensation of switching converters is often 
done by trial-and-error either in the laboratory or on a 
simulation model, such as the one shown in Fig. 7.   
Analytical methods are available, but the typical 
practicing engineer often works under a severe schedule 
constraint and does not have the time to learn or apply 
the analysis, which can be complex. 

The buck model is implemented with a PWM switch 
[11] and low-pass output filter.  The input filter is 
included, because it has a significant effect on the small 
signal dynamics of the converter.  The voltage feedback 
loop uses a PI controller to maintain regulation and meet 
the design specification for bandwidth and phase margin. 

Three component values in the feedback amplifier are 
selected as constrained parameters that are allowed to 
vary.  Each population member consists of binary-valued 

 
Figure 5 - Constraint and Cost Function Setup Menu 

 
Figure 6 - Genetic Operations Display 



concatenations of these three parameters.  The design 
specification requires a bandwidth of 8kHz and a phase 
margin between 65° and 85°.  The design is attempted 
with the trial-and-error method initially and the results 
are summarized in Table 1.  The bandwidth specification 

could not be met in a reasonable amount of time (< 
1hour).  The 2nd – order output filter of the buck and the 
effects of the input filter make a trail-and-error approach 
to compensation too difficult to achieve in a short time, 
unless luck intervenes.  The result of the optimization 
using GenSpice is shown in Fig. 8.  The bandwidth is 
within about 0.1% of 8kHz (Smallest Error box) and the 
phase margin has been successfully constrained to 
247.84°–180° ≈ 68°.  The three component values that 
produce this optimum level of performance are 
summarized in Table 1.  These three component values 
can be written into the PAR file with a function available 
in the Edit pull-down menu and PSpice can be run to 
valid the results.  The optimization took 7 minutes and 
45 seconds to run. 

6.  Conclusions 
Performance optimization on an electrical circuit, 

using PSpice and a Visual BASIC program GenSpice, 
has been demonstrated.  The simple optimization setup 
procedure consists of entering a schematic and design 
parameters into OrCAD Capture and defining 
operational characteristics, the design criteria and design 
specifications in two GenSpice menus.  No custom 
programming is required.  Newly defined Goal Functions 
can be reused in later optimizations, if desired.  GenSpice 

 
Figure 8 - GenSpice Main Menu 

 
Figure 7 - PSpice Schematic of Closed-loop Buck Converter with Input Filter 

 
Pre-

optimized 
Result 

Post-
optimized 

Result 

C4 100pF 907pF 

R7 4.99kΩ 2.76kΩ 
R9 200Ω 570Ω 

Phase Margin 92° 68° 
Bandwidth 2419 Hz 8008 Hz 

Table 1 – Pre- and Post-Optimization Results 



utilizes functions built into PSpice to minimize the 
optimization setup. 

GenSpice is a useful engineering and pedagogical 
tool for circuit optimization.  The authors plan to offer 
GenSpice to interested parties at no cost.  It is hoped that 
GenSpice will stimulate additional interest in developing 
low-cost, off-the-shelf optimization tools. 
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